On smoothing properties of the Bergman projection
نویسندگان
چکیده
We study smoothing properties of the Bergman projection and weighted projections. In particular, we relate these to hyperconvexity index a pseudoconvex domain in C n . The notion was first introduced by B.Y. Chen, which provides flexible criterion for studying geometric hyperconvex domains. also obtain new estimate projections, extends well-known Berndtsson Charpentier. then give some applications this estimate.
منابع مشابه
Duality of Holomorphic Function Spaces and Smoothing Properties of the Bergman Projection
Let Ω ⊂⊂ C be a domain with smooth boundary, whose Bergman projection B maps the Sobolev space H1(Ω) (continuously) into H2(Ω). We establish two smoothing results: (i) the full Sobolev norm ‖Bf‖k2 is controlled by L derivatives of f taken along a single, distinguished direction (of order ≤ k1), and (ii) the projection of a conjugate holomorphic function in L(Ω) is automatically in H2(Ω). There ...
متن کامل$L^p$ boundedness of the Bergman projection on some generalized Hartogs triangles
In this paper we investigate a two classes of domains in $mathbb{C}^n$ generalizing the Hartogs triangle. We prove optimal estimates for the mapping properties of the Bergman projection on these domains.
متن کاملcontrol of the optical properties of nanoparticles by laser fields
در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...
15 صفحه اولIrregularity of the Bergman Projection on Worm Domains in C
We construct higher-dimensional versions of the Diederich-Fornæss worm domains and show that the Bergman projection operators for these domains are not bounded on high-order Lp-Sobolev spaces for 1 ≤ p < ∞.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2021
ISSN: ['0022-247X', '1096-0813']
DOI: https://doi.org/10.1016/j.jmaa.2020.124782